Jagged 1 Rescues the Duchenne Muscular Dystrophy Phenotype
نویسندگان
چکیده
Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner. PAPERCLIP.
منابع مشابه
P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملDetection of the Duplication in Exons 56-63 of Duchenne Muscular Dystrophy Patients with MLPA
Background Duchenne Muscular Dystrophy (DMD) is a deadly X-linked recessive disorder. This genetic disorder affects 1 among 3,500-5,000 males in the world. The majority of the patients are male, due to the type of inheritance. It affects most of the skeletal, the respiratory, and cardiac muscles, causing these vital organs to contract and eventually mortality.<br...
متن کاملGenetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice.
Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy are inherited muscle disorders caused by mutations of genes encoding the extracellular matrix protein collagen VI (ColVI). Mice lacking ColVI (Col6a1(-/-)) display a myopathic phenotype associated with ultrastructural alterations of mitochondria and sarcoplasmic reticulum, mitochondrial dysfunction with abnormal opening of the pe...
متن کاملDystrophin Exon 29 Nonsense Mutations Cause a Variably Mild Phenotype
Background Nonsense mutations in the dystrophin gene usually result in a severe Duchenne muscular dystrophy phenotype. Findings We describe a 7-year-old boy with a rare pathogenic mutation in exon 29 c.3940C>T p.(Arg1314Ter) resulting in exon skipping, in turn rescuing the phenotype from a severe Duchenne type to a milder Becker muscular dystrophy type. No adults have been described with this...
متن کامل[X-linked dilated cardiomyopathy: a cardiospecific phenotype of dystrophinopathy].
X-linked dilated cardiomyopathy (XLDCM) is a distinct phenotype of dystrophinopathy characterized by preferential cardiac involvement without any overt skeletal myopathy. XLDCM is caused by mutations of the Duchenne muscular dystrophy (DMD) gene and results in lethal heart failure in individuals between 10 and 20 years. Patients with Becker muscular dystrophy, an allelic disorder, have a milder...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 163 شماره
صفحات -
تاریخ انتشار 2015